Chapter 4

Chapter Test Form A

1. $\sin \theta=\frac{15}{17}, \cos \theta=\frac{8}{17}, \tan \theta=\frac{15}{8}, \csc \theta=\frac{17}{15}$, $\sec \theta=\frac{17}{8}, \cot \theta=\frac{8}{15}$
2. $\sec 2 \approx-2.40$
3. 16 inches
4. $\alpha=52^{\circ} ; a \approx 5.76 ; c \approx 7.31$
5. B
6. Amplitude: 6; Period: $\frac{2 \pi}{3}$; Phase shift: $\frac{\pi}{12}$; Vertical translation: 2
7. (a) No
(b) Yes, 3^{-x}
(c) Yes, $-4 x$
(d) No
(e) Yes, $0.35 e^{-0.07 x}$
8. The graph of $y=3 \csc \frac{1}{2} x$ can be obtained from the graph of $y=\csc x$ by a vertical stretch of factor 3 and a horizontal stretch of factor 2. Period: 4π;
Domain: all reals except $x=2 \pi n, n$ any integer; Range: $(-\infty,-3] \cup[3, \infty)$; Zeros: none;
Asymptotes: $x=n 2 \pi, n$ any integer

9. $x \approx 3.50$ or $x \approx 6.64$
10. $a \approx 4.47 ; b=5.00 ; h \approx 0.22$
11. B
12. 327.4 meters
13. $\cos \left(\sin ^{-1} u\right)=\sqrt{1-u^{2}}$; The \pm sign is unnecessary because the range of $\sin ^{-1} u$ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and $\cos x \geq 0$ for $x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
14. (a) $\$ 80$ million
(b) $\$ 92.5$ million
(c) 8 years
15. Period: 2π

Chapter 5

1. $\sec ^{2} x-\frac{\sec ^{2} x}{\csc ^{2} x}=\frac{1}{\cos ^{2} x}-\frac{\frac{1}{\cos ^{2} x}}{\frac{1}{\sin ^{2} x}}=\frac{1-\sin ^{2} x}{\cos ^{2} x}$

$$
=\frac{\cos ^{2} x}{\cos ^{2} x}=1
$$

2. $(\tan x+1)^{2}=\tan ^{2} x+2 \tan x+1$

$$
\begin{aligned}
& =\left(\tan ^{2} x+1\right)+2 \tan x \\
& =\sec ^{2} x+2 \tan x \\
& =\frac{1}{\cos ^{2} x}+2 \frac{\sin x}{\cos x}=\frac{1+2 \sin x \cos x}{\cos ^{2} x}
\end{aligned}
$$

3. $x=\frac{\pi}{2}+2 \pi n$, or $x=\frac{\pi}{4}+n \pi$ where n is any integer
4. No; any value of x (except $\frac{\pi}{2}+n \pi, n$ an integer) counter example.
5. $\frac{\sqrt{6}-\sqrt{2}}{4}$
6. $\cos 3 x=\cos x \cos 2 x-\sin x \sin 2 x$
$=\cos x\left(\cos ^{2} x-\sin ^{2} x\right)-\sin x(2 \sin x \cos x)$ $=\cos ^{3} x-3 \sin ^{2} x \cos x$
7. $\pm \sqrt{\frac{1-\cos 6 C}{2}}$
8. $\beta=59.16^{\circ}$
9. 0
10. $\theta \approx 25.41^{\circ}$ or $\theta \approx 64.59^{\circ}$
11. 52,440 square feet
12. 12.2 meters
13. About 646.7 ft
14. 87.5 meters
15. $A(\theta)=64 \cos \frac{\theta}{2} \sin \frac{\theta}{2}=32 \sin \theta$ $\theta \approx 51.38^{\circ}$ or $\theta \approx 128.62^{\circ}$

Chapter 6

■ Chapter Test Form A

1. $-5 \mathbf{i}+\mathbf{j}$
2. $\langle-10,19\rangle$
3. Ground speed $\approx 437.90 \mathrm{mph}$; Bearing $\approx 261.78^{\circ}$ or 8.22° south of due west.
4. $\langle 7 / 25,-24 / 25\rangle=\langle 0.28,-0.96\rangle$
5. $\langle 2,-2\rangle$
6. $12(\cos 3 \pi / 4+i \sin 3 \pi / 4)$
7. $\langle 3,3\rangle$
8. Approximately $(6.55,-4.59)$
9. $\frac{7}{4}+i \frac{7 \sqrt{3}}{4}$
10. parabola; $y=1-x^{2}$
11. (a) $x(t)=\left(90 \cos 70^{\circ}\right) t$; $y(t)=-16 t^{2}+\left(90 \sin 70^{\circ}\right) t$
(b) $0 \leq t \leq 5.29$
(c) $\approx 163 \mathrm{ft}$
12. A
13. About 7.63 miles
14. $0 \leq \theta \leq \pi$;

15. $5(\cos \theta+i \sin \theta)$, where $\theta=5 \pi / 12,3 \pi / 4,13 \pi / 12$, $17 \pi / 12,7 \pi / 4$
16. $15,625 i$

■ Chapter Test Form A

Chapter 7

1. $(-1,-4),(2,-1)$
2. $(1,3)$
3. $(-2.20,-7.81),(-0.41,-0.64),(1.11,5.44)$
4. B
5. $(2,-3,1)$
6. $(3 z+2,2 z-1, z)$, where z is any real number
7. D
8. $\left[\begin{array}{ll}299 & 460 \\ 345 & 207\end{array}\right]$ is 1.15 times the original matrix.
9.

$$
2 x+y=3
$$

$$
-x+3 y+4 z=0
$$

$$
-2 y+z=5
$$

10. $(-13,28,23)$
11. (a) $x+y+z=40,000$

$$
\begin{aligned}
6 x+8 y+10 z & =324,000 \\
8 y-5 z & =0
\end{aligned}
$$

(b) $\left[\begin{array}{rrr}1 & 1 & 1 \\ 6 & 8 & 10 \\ 0 & 8 & -5\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{r}40,000 \\ 324,000 \\ 0\end{array}\right]$
12. $\left[\begin{array}{rrr}1 & 0 & 0 \\ 22 & 1 & -5 \\ -4 & 0 & 1\end{array}\right]$
13. $\frac{3}{x+3}+\frac{2}{x-2}$
14.

$-6 \leq x \leq-3.4$ and $3.4 \leq x \leq 6$
15. $C=21$ at $(3,6)$

1. C

Chapter 8

2. $x=\frac{1}{4}(y+4)^{2}-4$
3. Center: $(3,5)$; Foci: $(3,5 \pm \sqrt{34})$;

Endpoints: $(3,2),(3,8)$;
Asymptotes: $y=5 \pm \frac{3}{5}(x-3)$.
4.

5. $(3,5)$
6. $x=\frac{1}{4}(y-4)^{2}+2$
7. $r=\frac{15}{4-\sin \theta}$
8. 40 meters
9. Hyperbola: $e=\frac{8}{5}$; Directrix: $x=3$
10. The antenna should be $\frac{4}{3}$ feet from the vertex or 16 inches.
11. Hyperbola
12. $y=\frac{4-x \pm \sqrt{25 x^{2}-32 x-56}}{6}$
13. $\frac{(x-5)^{2}}{4}+(y+2)^{2}=1$; ellipse
14. $\sqrt{21}$
15. $x=2+3 t ; y=-1-5 t ; z=3+3 t$
16. $(x-1)^{2}+(y-5)^{2}+(z+4)^{2}=144$

